
Multi-Population Genetic Algorithm for the Optimization of Computer Image
Recognition Training

Holden Jones
James A. Bilitski, Ph.D.

Department of Computer Science, University of Pittsburgh at Johnstown

 In artificial intelligence, the creation of
new neural networks is often a problem of
guesswork. Without extensive manual
testing, it is incredibly difficult to figure
out the exact number of layers, number of
neurons, and other parameters to use in the
setup of the average system. These small
tweaks and changes can take a very long
time to optimize properly without
automation.
 As the importance of neural networks in
our everyday lives grows, from Spotify’s
song-recommending artificial brain[2] to
Facebook’s ability to accurately recognize
faces in pictures[3], the efficiency of
creating these networks becomes an
increasingly important task to automate.
The more automatic the creation of a
neural network can be, the easier it is for
more developers to be able to use them in a
variety of important applications.

 In this study, Google TensorFlow GPU-
accelerated optical character recognition neural
network was created, using the MNIST
Handwritten Digit Database [4] as input data to
train on. Using this collection of over 55,000
images of single numeric digits, a four-layer
neural network was created, with the first three
layers having a non-set number of neurons, and
the final layer having ten output neurons (For the
digits 0 through 9, as shown in Figure 1).

Figure 1: A collection of handwritten digits from the MNIST

database. [5]

To optimize the number of neurons for these
flexible layers, a Multi-Population Evolutionary
Algorithm was created, with the three numbers
of neurons used as the conditional parameters,
and the resulting time spent training, alongside
the final accuracy percentage, being used as a
combined fitness value, the measure of the
success of the optimization, through the formula:

Fitness = Training Time * (1—Accuracy)

The algorithm was split into three separate
populations, labelled as Blue, Red, and Yellow,
each comprised of six genetic individuals. Each
of these populations was evolved over 150
generations, with a 1% chance of genetic
mutation per individual per generation and a
50% chance of a single-value swap genetic
crossover between fitness-weighted parent
choices.

To best benefit from the multi-population
evolutionary algorithm, a mandatory
immigration operation was performed every 20
generations, causing the top member in each
population to be rotated to the next in the cycle.

A traditional single-population evolutionary
algorithm with 18 members was run as a baseline
from which to compare the multi-population
network.

1. Abstract

2. Introduction

3. Methodology 4. Results & Conclusions

 Machine learning algorithms face the challenge of being

accurate as well as being computationally intensive. This

research addresses these issues by applying optimizations

for training an artificial neural network in an image

recognition system by using a multi-population genetic

algorithm. This study used Google’s TensorFlow -- an

open source software library that provides a framework for

neural networks. Experimentation used a multiple-

population genetic algorithm to optimize the parameters

for the training of a basic image recognition

network. Traditional genetic algorithms utilize a single

population of individuals.[1] The use of a multi-

population genetic algorithm allows for the speed and

accuracy of the network, quantified as a fitness value, to be

optimized over potentially tens of thousands of generations

of separate populations of individuals. These multiple

populations allow for separate evolutionary divergence—

much like how geographic dividers caused divergent

populations in the evolution of actual life. The use of a

small amount of cross-population immigration facilitates

the sharing of beneficial genetic data across the entire set.

The results show that parameters of the neural network

were noticeably optimized.

31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

1 4 7

10 13 16 1
9

2
2 25 28 3
1

3
4 37 40 43 4
6 49 52 55 5
8 61 64 67 7
0 73 76 79 8
2

8
5 88 91 94 9
7

10
0

10
3

10
6

1
0

9

11
2

11
5

11
8

1
2

1

12
4

12
7

13
0

1
3

3

1
3

6

13
9

14
2

14
5

1
4

8

A
vg

. T
im

e
to

 T
ra

in
 (

s)

Generation

Average Training Time

Multi Population

Single Population

Log. (Multi Population)

Log. (Single Population)

0.9550

0.9570

0.9590

0.9610

0.9630

0.9650

0.9670

0.9690

0.9710

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85 89 93 97 101105109113117121125129133137141145149

A
ve

ra
ge

 A
cc

u
ra

cy
 (%

)

Generation

Average Accuracy

Multi Population

Single Population

Log. (Multi Population)

Log. (Single Population)

1.3000

1.5000

1.7000

1.9000

2.1000

2.3000

2.5000

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85 89 93 97 101105109113117121125129133137141145149

Fi
tn

es
s

V
al

u
e

Generation

Average Fitness Value

Multi Population

Single Population

Log. (Multi Population)

Log. (Single Population)

[1] Holland, J. H. (1975). Adaptation in natural
and artificial systems. Ann Arbor, MI:
University of Michigan Press.

[2] Dieleman, Sander. "Recommending Music
on Spotify with Deep Learning." Sander
Dieleman. Sander Dieleman, 5 Aug. 2014. Web.

[3] Taigman, Yaniv, Ming Yang, Marc'Aurelio
Ranzato, and Lior Wolf. "DeepFace: Closing the
Gap to Human-Level Performance in Face
Verification." Facebook Research. Facebook, 24
June 2014. Web.

[4] LeCun, Yann, Corinna Cortes, and
Christopher J.C. Burges. "The MNIST
Database." MNIST Handwritten Digit Database,
Yann LeCun, Corinna Cortes and Chris Burges.
New York University, Google Labs, n.d. Web.
06 Apr. 2017.

[5] TensorLayer Contributors. “MNIST Digits”
Tutorial—TensorLayer 1.4.2 Documentation,
TensorLayer. 2016.

Citations

 During training, both algorithms took slightly over

24 hours to complete their 150 generations, and

afterwards resulted in 8100 data points from which to

observe the optimization trends. Both algorithms

achieved a general trend towards lower training time

and higher accuracy, resulting in a beneficial

optimization of the randomly-initialized neural

network without outside input.

 From start to finish, the Multi-Population

algorithm saw a nine-second decrease in maximum

recorded training time, and, as shown in Figure 2, a

four-second decrease in average training time. While

the results for training accuracy were not quite as

pronounced, with a 0.54% overall increase in

accuracy over the evolutionary period for the Multi-

Population algorithm shown in Figure 3, an overall

trend towards increased accuracy can be seen in the

graphed data.

 Combined, the Average Fitness Value graph shown

in Figure 4 portrays one of the benefits of the multi-

population algorithm over the single-population

algorithm: as three separate populations are

generated and evolve separately, negative initial

genetic data is able to be improved far more easily

with the immigration operator every 20 generations.

If a single population fixates on negative genetic

data, immigrants from other populations end up

allowing beneficial genes to be re-introduced into the

genetic pool. While the Single-Population algorithm

fixates on long training times for nearly 40

generations, the Multi-Population algorithm breeds

its defects out more quickly, resulting in a

beneficially low fitness value.

 The algorithm was able to produce a statistically

relevant result, optimizing the parameters of the

basic image recognition network to a recognizable

extent without any human interaction. Further

improvements to the methodology may improve

performance. One such improvement would be to

independently process the populations on individual

processors where the data is shared every 20

generations.

Figure 2 : Average Training Time per Generation

Figure 3 : Average Accuracy per Generation

Figure 4: Average Fitness Value per Generation

