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 In artificial intelligence, the creation of 
new neural networks is often a problem of 
guesswork. Without extensive manual 
testing, it is incredibly difficult to figure 
out the exact number of layers, number of 
neurons, and other parameters to use in the 
setup of the average system. These small 
tweaks and changes can take a very long 
time to optimize properly without 
automation.  
 As the importance of neural networks in 
our everyday lives grows, from Spotify’s 
song-recommending artificial brain[2] to 
Facebook’s ability to accurately recognize 
faces in pictures[3],  the efficiency of 
creating these networks becomes an 
increasingly important task to automate. 
The more automatic the creation of a 
neural network can be, the easier it is for 
more developers to be able to use them in a 
variety of important applications. 

 In this study,  Google TensorFlow GPU-
accelerated optical character recognition neural 
network was created, using the MNIST  
Handwritten Digit Database [4] as input data to 
train on. Using this collection of over 55,000 
images of single numeric digits, a four-layer 
neural network was created, with the first three 
layers having a non-set number of neurons, and 
the final layer having ten output neurons (For the 
digits 0 through 9, as shown in Figure 1).  
 

 

  
Figure 1: A collection of handwritten digits from the MNIST 

database. [5] 

 
 
To optimize the number of neurons for these 
flexible layers, a Multi-Population Evolutionary 
Algorithm was created, with the three numbers 
of neurons used as the conditional parameters, 
and the resulting time spent training, alongside 
the final accuracy percentage, being used as a 
combined fitness value, the measure of the 
success of the optimization, through the formula: 
 

Fitness = Training Time * (1—Accuracy) 
 

The algorithm was split into three separate 
populations, labelled as Blue, Red, and Yellow, 
each comprised of six genetic individuals. Each 
of these populations was evolved  over 150 
generations, with a 1% chance of genetic 
mutation per individual per generation and a 
50% chance of a single-value swap genetic 
crossover between fitness-weighted parent 
choices.  
 
To best benefit from the multi-population 
evolutionary algorithm, a mandatory 
immigration operation was performed every 20 
generations, causing the top member in each 
population to be rotated to the next in the cycle. 
 
A traditional single-population evolutionary 
algorithm with 18 members was run as a baseline 
from which to compare the multi-population 
network. 
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 Machine learning algorithms face the challenge of being 

accurate as well as being computationally intensive.   This 

research addresses these issues by applying optimizations 

for training an artificial neural network in an image 

recognition system by using a multi-population genetic 

algorithm.   This study used Google’s TensorFlow -- an 

open source software library that provides a framework for 

neural networks.   Experimentation used a multiple-

population genetic algorithm to optimize the parameters 

for the training of a basic image recognition 

network.  Traditional genetic algorithms utilize a single 

population of individuals.[1]  The use of a multi-

population genetic algorithm allows for the speed and 

accuracy of the network, quantified as a fitness value, to be 

optimized over potentially tens of thousands of generations 

of separate populations of individuals.  These multiple 

populations allow for separate evolutionary divergence—

much like how geographic dividers caused divergent 

populations in the evolution of actual life.  The use of a 

small amount of cross-population immigration facilitates 

the sharing of beneficial genetic data across the entire set. 

The results show that parameters of the neural network 

were noticeably optimized. 
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 During training, both algorithms took slightly over 

24 hours to complete their 150 generations, and 

afterwards resulted in 8100 data points from which to 

observe the optimization trends. Both algorithms 

achieved a general trend towards  lower training time 

and higher accuracy, resulting in a beneficial 

optimization of the randomly-initialized neural 

network without outside input.  

 

 From start to finish, the Multi-Population 

algorithm saw a nine-second decrease in maximum 

recorded training time, and, as shown in Figure 2, a 

four-second decrease in average training time. While 

the results for training accuracy were not quite as 

pronounced, with a 0.54% overall increase in 

accuracy over the evolutionary period for the Multi-

Population algorithm shown in Figure 3, an overall 

trend towards increased accuracy can be seen in the 

graphed data. 

 

 Combined, the Average Fitness Value graph shown 

in Figure 4 portrays one of the benefits of the multi-

population algorithm over the single-population 

algorithm: as three separate populations are 

generated and evolve separately, negative initial 

genetic data is able to be improved far more easily 

with the immigration operator every 20 generations. 

If a single population fixates on negative genetic 

data, immigrants from other populations end up 

allowing beneficial genes to be re-introduced into the 

genetic pool. While the Single-Population algorithm 

fixates on long training times for nearly 40 

generations, the Multi-Population algorithm breeds 

its defects out more quickly, resulting in a 

beneficially low fitness value. 

 

 The algorithm was able to produce a statistically 

relevant result, optimizing the parameters of the 

basic image recognition network to a recognizable 

extent without any human interaction. Further 

improvements to the methodology may improve 

performance.  One such improvement would be to 

independently process the populations on individual 

processors where the data is shared every 20 

generations.  

Figure 2 : Average Training Time per Generation 

Figure 3 : Average  Accuracy per Generation 

Figure 4: Average Fitness Value per Generation 


